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Abstract 
Applications of graph theory are ubiquitous however, 

many unsolved problems cap its utility. One of these is 

to say whether two graphs are isomorphic or not by 

using graph invariants within polynomial time. It is 

extremely difficult as the quest for a complete graph 

invariant which can distinguish graphs uniquely and is 

still easy to calculate is not complete. Here, in this 

paper, we discuss some of the important existing graph 

invariants and show how they fail in the case of regular 

graphs. Also, we have discovered some new graph 

invariants (First Order Cyclical Shapes, First Order 

Participation Number, Second Order Cyclical Shapes, 

Second Order Participation Number and 

Neighbourhood Cluster Analysis) that can be used as 

complete graph invariants for highly symmetrical 

graphs. The complexity to calculate our proposed 

invariants increases merely in polynomial manner with 

respect to the input size of graph. These invariants can 

act as stepping stones to test for graph isomorphism. A 

method to shift the runtime complexity of graph 

isomorphism from non-polynomial space to polynomial 

space would have wide ranging effects. Such methods 

will eventually develop significant advancements in the 

field of cryptography, automata theory, compilers, 

image processing etc. and in future can also be 

modified to develop a solution for complete Graph 

Isomorphism problem in polynomial time. 

Keywords: graph theory, graph isomorphism, 

Generalised Johnson graphs, graph invariant, 

strongly regular graphs. 

1. Introduction 

A graph is a mathematical structure which is used 

to model pairwise relations between objects. In 

simpler terms it is an ordered pair comprising of a 

set of nodes together with a set of edges. Any 

structure or pattern (be it any building or location 

or planetary bodies, even the entire universe) can 

be represented by a graph, therefore, 

understanding and comparing graph properties has 

diverse applications, ranging from computer 

science, chemistry, linguistics, psychology, 

sociology, etc[1]. Many research groups have 

tried to study graph properties like connectivity, 

regularity, symmetry etc. to understand graphs 

invariants such as colouring, planarity, 

chromaticity, etc. Graph properties [2] depend 

only on the structure of the graph and are 

independent of any labellings or drawings. Graph 

properties are generally singular boolean values or 

function of the graph which determine a single 

domain, for example, connected graphs, regular 

graphs, bipartite graphs etc. Graph invariant, on 

the other hand, is a combination of graph 

properties which result from the overall structure 

of the graph (for example; eccentricity, radius, 

diameter, girth etc). The values for the graph 

invariants represent a broader class of values such 

as boolean values, integer values, real numbers, 

sequence of numbers etc. A complete graph 

invariant is one which successfully and uniquely 

identifies isomorphisms for two graphs[3]. 

However, the solution to seemingly trivial 

problem of graph isomorphism has forever 

remained a tantalizing mystery. Despite many 

efforts, the complexity of solving the graph 

isomorphism has remained a problem of 

exponential nature. In simpler terms, this makes it 

next to impossible to identify whether a given 

graph is identical to another. Graph invariants are 

significant in obtaining faster computational speed 

for determining graph isomorphism/non-

isomorphism.  

The problem of Graph Isomorphism (GI)[4] is to 

check whether two given finite graphs are 

structurally different or one is just a perturbed 

variant of the other. Two graphs are said to be 

isomorphic if  
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 Both have same number of vertices, edges and 

degree sequence (for an undirected graph is 

the decreasing order of the degrees of the 

vertices of the graph); and  

 There is a bijective mapping between the 

vertices of one graph to the vertices of the 

other graph such that the edge connectivity is 

maintained.  

GI is a classical problem in the theory of 

computation because of its unresolved complexity 

status within the polynomial/non-deterministic 

polynomial (P/NP) space[5]. No efficient method 

for GI has yet been designed or created with 

Polynomial (P) complexity[6]. It is the second last 

of the twelve problems [7] (Graph Isomorphism, 

Subgraph homeomorphism, Graph genus, Chordal 

graph completion, Chromatic index, Spanning tree 

parity problem, Partial order dimension, 

Precedence constrained 3-processor scheduling, 

Linear programming, Total unimodularity, 

Composite number, Minimum length 

triangulation) whose complexity remains elusive, 

the last being integer factorization. (Prof. Laszlo 

Babai is given credit for bringing down the time 

complexity of GI from sub-exponential to quasi-

polynomial time, but it is still not polynomial [6]). 

The P vs NP problem is one of the biggest 

problems in theoretical computer science which 

questions whether the solution to every problem 

can be verified (NP) as well as solved (P) in 

polynomial time. It is one of the seven Millenium 

Prize problems for which Clay Mathematics 

Institute has announced US $1,000,000 prize for 

the first solution[8]. Since GI is a NP problem, a 

polynomial time solution to it would be a vital 

progression towards solving the P vs NP problem. 

The first workable solution of GI was given by 

McKay[5] in the form of a tool called nautY 

whose complexity was exponential (O(2
√n

)). 

nautY worked on the principles of colouring 

vertices of graphs. Initially, nautY colours the 

vertices of a graph with a single colour and then 

refines this colouring using a particular vertex 

invariant. nautY could determine if two graphs are 

isomorphic by checking whether their canonical 

labelling were identical after the colouring 

refinement. Babai & Luks [9] then adopted a 

better approach by declaring a sub-exponential 

time algorithm for the graph isomorphism by 

following an algebraic approach. The time 

complexity for their algorithm was 
nnO log

2 . 

Saucy algorithm [10] is an updated solution for 

graph isomorphism but it does not deal with 

approximate symmetries. Bliss[11] was designed 

for computing automorphic groups and canonical 

labelling of graphs. Recently, GI has been reduced 

to quasi-polynomial time complexity by Prof. 

Laszlo Babai[6]. However, his solution is not 

extendible to extremely symmetric Johnson 

graphs. All these algorithms use the approach of 

differential colouring of nodes. Most of these 

groups have focused on partitioning of the 

vertices[10] on the basis of colouring[5] 

according to their connections for solving GI. 

These methods, though suited for most classes of 

graphs, fail in the case of highly symmetric 

graphs[6]. In these types of graphs, the vertices 

cannot be distinguished on the basis of 

connectivity because all of them are 

topographically equal. Hence, a method is 

required to find a new perspective to solve these 

kinds of graphs by making use of their symmetry 

rather than attempting to look for elusive 

differences. Since the quest to identify a solution 

to GI with polynomial time and space complexity 

is still on, we have identified novel properties of 

graph and have extended them to obtain a highly 

deterministic invariant.  

1.1 Conventional Invariants 

There are numerous graph invariants out of which 

a few can solve graph isomorphism. A graph 

invariant is strong only if it can, identify two non-

isomorphic graphs as non-isomorphic. For 

instance, vertex count (number of vertices of a 

graph) and degree sequence (for an undirected 

graph is the decreasing order of the degrees of the 

vertices of the graph) are weak invariants as they 

are not efficient discriminators for graph 

isomorphism[1].  

        
(a) Graph I (b)  Graph II 

Fig 1: Regular graphs. The degree sequence of Fig 1a and 

1b are identical (A3, B3, C3, D3, E3, F3, G3) even though 

these graphs are not isomorphic to each other. 
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Eccentricity[12] (maximum geodesic distance 

between a vertex to all other vertices), girth[13] 

(the number of edges in the shortest cycle of a 

graph) and chromatic number[14] (the smallest 

number of colors needed to color the vertices of G 

so that no two adjacent vertices share the same 

color) can be considered as moderate graph 

invariants. Eccentricity and girth are easy to 

compute. However, there are many instances of 

graphs in which these invariants alone cannot 

determine whether two graphs are isomorphic or 

not (See Fig 2a, 2b and Table 1a and 1b). 

                  

Graph III               (b) Graph IV 

Fig 2: Irregular graphs. The degree sequence of Fig 2a and 

Fig 2b are the same (A3, B3, E3, F3, C2, D2, G2). The girth of 

graphs in Fig 2a and Fig 2b is 3. But these graphs are not 

isomorphic to each other. 

The eccentricity of all the vertices of the graphs in 

Fig 1(a) and Fig 1(b) are mentioned in Table 1(a) 

and 1(b). 

Table 1:  Eccentricity of Graph I in (a) and Graph II in (b). 

Even though the eccentricity is same for both graphs I and 

II, these graphs are not isomorphic to each other. They are 

regular graphs (vertices having same degrees) having equal 

degree sequence. 

(a)    (b) 

 

 

Chromatic number (or Graph vertex colouring), is 

not computable in polynomial time (across all sets 

of graphs) as the complexity to calculate it is NP-

Complete[15].  

1.2 Hard Instances of Symmetrical graphs  

The cyclical shapes (CS) can be classified on the 

basis of the increasing size. There are some 

regular graphs for which any combination of 

graph invariants fail to uniquely identify 

isomorphic graphs. Two examples of such hard 

instances of symmetrical graphs are:  

1.2.1 Generalised Johnson Graphs 

The graphs in Fig 3(a) and Fig 3(b) are called 

Generalised Johnson graphs[17]. These are 

highly symmetrical graphs characterized by 

peculiar structural properties which are derived 

from a set of "discrete and equivalent entities" by 

the application of a system of "subsets sampling". 

Generalised Johnson graphs consists of 3 

variables n, k and i and is denoted by GJ(n;k; i) 

where n represents the total number of elements 

of the set, k represents the size of the subset and i 

represents the intersection number between any 

two subsets. Two vertices are said to be connected 

in a Generalised Johnson graph if their 

intersection has a size of i set-elements. The value 

of i ranges from 0 to k-1. When the value of i is 0 

it results in a special type of graph called Kneser 

graph[18] (Additional Information Fig 9(a)). 

When the value of i is k-1 it results in Johnson 

graphs (Additional Information Fig 9(b 

)). Kneser graphs and Johnson graphs are 

complementary to each other i.e. union of Kneser 

and Johnson graph, of same dimensions, result in 

the formation of complete graph (Additional 

Information Fig 9(c)). Johnson graph are also 

highly symmetrical distance transitive graphs[19] 

(a distance-transitive graph is a graph such that, if 

a pair of vertices v and w are at any distance d, 

and any other pair of vertices x and y are also at 

the same distance, then v and w can be mapped 

onto x and y). For example, in a Johnson graph 

(say J(4,2)) as shown in Fig 4, n=4 and k=2. For a 

graph to be a Johnson graph, the value of i is 

always equal to k-1. Hence, in this example i=1. 

As n represents the total number of elements of 

the set, the elements of the set S are 1,2,3,4 and 

the size of the subset is 2. Therefore, the 

combinations of subsets taken would be from S 

whose total size would be 2. Hence, the possible 

combinations of subset are (1,2), (1,3), (1,4), 

(2,3), (2,4), (3,4). These are the vertices of the 

graph. Therefore, the number of vertices for the 

Johnson graph J(4,2) are 6. Two vertices are said 

to be connected in a Johnson graph if their 

intersection size is k-1. Therefore, in this example, 

the vertices which have only 1 common element 

in the subset are connected to each other. As 

Vertex Eccentricity 

A 2 

B 2 

C 2 

D 2 

E 2 

F 2 

G 2 

Vertex Eccentricity 

A 2 

B 2 

C 2 

D 2 

E 2 

F 2 

G 2 
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shown in Fig 4, (1,2) is connected to (2,3) because 

it shares only 1 common element2. Likewise, it 

is connected to (1,3), (1,4) and (2,4). (1,2) is not 

connected to (3,4) because it does not share any 

common element with each other.                       

 
 

(a) Graph V: GJ(6,3,1). 

 

 
(b) Graph VI: GJ(6,3,2). 

Fig 3: Generalised Johnson graphs. The degree sequence of 

both graphs V and VI are (A9, B9, C9, D9, E9, F9, G9, H9, I9, 

J9, K9, L9, M9, N9, O9, P9, Q9, R9, S9, T9).The girth of both 

graphs is 3 and the chromatic number is 6[16]. The 

eccentricity of graphs V and VI are also same, i.e. 3 for 

every vertex. Now, if these graph invariants are combined, 

it can be concluded that graphs V and VI are isomorphic to 

each other, which is actually true. But the existing graph 

invariants alone cannot determine its validity. 

 
Fig 4: Johnson Graph J(4,2). 

 
Fig 5: Strongly Regular Graph SRG(5,2,0,1)               

1.2.2 Strongly Regular Graphs 

A Strongly Regular graph[20] is represented as 

SRG(v,d,λ,µ) and these parameters denote the 

total number of vertices (v), degrees of each 

vertex (d), common neighbours for adjacent 

vertices (λ) and common neighbours for non-

adjacent vertices (µ)[21]. Let us take an example 

to understand a Strongly Regular Graph 

SRG(5,2,0,1) as shown in Fig 5. Here, v=5, d=2, λ 

=0 and µ =1. Vertices 1 and 2 (adjacent) have 0 

common neighbours and vertices 1 and 3 (non-

adjacent) have 1 common neighbor2. This is 

same for every pair of adjacent and non-adjacent 

vertices in the given graph[22]. It is to be noted 

that not all Strongly Regular graphs are 

symmetrical graphs[23] (for example STS). A 

Steiner Triple System[24], denoted by STS(n), is 

a pair (S,T) comprising a set S with n elements, 

and a set T comprising triples of S called blocks 

such that every pair of elements of S appear 

together in a unique triple of T. These graphs 

(Figs 3(a), 3(b), 6(a) and 6(b)) are epitome of 

symmetry and we have identified novel graph 

properties on the basis of which novel graph 

invariants are also discovered that can determine 

graph isomorphism for such hard instances of 

symmetrical graphs.    

         
(a) Graph VII.      (b) Graph VIII. 

Fig 6: Strongly Regular graphs SRG(16,6,2,2). The degree 

sequence of both graphs VII ( Lattice(4,4) Graph) and VIII 

(Shrikhande Graph)are (A6, B6, C6, D6, E6, F6, G6, H6, 

I6, J6, K6, L6, M6, N6, O6, P6). The girth of both graphs is 

3 and the chromatic number is 4. The eccentricity of 

graphs VII and VIII are also same, i.e. 2 for every vertex. 

Therefore, combining these graph invariants, it may seem 

that graphs VII and VIII are isomorphic to each other, 

which is not true. These two graphs are non-isomorphic 

forms and again, this underlines the complex nature of 

graph isomorphism. 

1.3 Novel Graph Properties on the basis of 

Cyclical Shapes 

In order to identify novel invariants, we examined 

the relationship between the cyclical shapes and 

structural organisation of graphs. In the past too 
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some research groups have attempted to study the 

arrangement of CS constituting the graphs[25]. 

1.3.1 First Order Cyclical Shape 

The First Order Cyclical Shape (FCS) of each 

vertex is the minimum number of edges involved 

in forming the shortest cycle for that vertex. It 

may or may not be equal to the girth of the graph 

since girth is a global property and FCS is 

confined to every vertex of the graph. Girth is, 

therefore, the minimum value of the FCS 

calculated for all the vertices of the graph. The set 

of FCS sequence arranged in decreasing order can 

be a very important graph invariant because for 

maximum classes of graph, this set comes out to 

be unique. Let us understand FCS with the help of 

J(4,2) in Fig 7. 

 
Fig 7: First Order Cyclical Shapes of J(4,2). Vertex 1 has 4 

FCS of size 3. They are as follows: 1-5-4, 1-4-2, 1-2-3 and 1-

5-3. This way, the FCS is calculated for all the vertices of 

the graph. The total number of FCS for J(4,2) are 8 and 

they are: 1-5-4, 1-4-2, 1-2-3, 1-5-3, 2-3-6, 2-4-6, 3-5-6 and 4-

5-6. 

1.3.2 Second Order Cyclical Shape 

Second Order Cyclical Shapes (SCS) are vertices 

connected in closed chain, whose length is atleast 

one more than the FCS, such that there is no FCS 

completely encompassed within. A cyclical shape 

would be considered as SCS if and only if it 

satisfies the following conditions: 

 The length of the cyclical shape should be 

atleast equal to 1 more than the size of FCS 

and should not be more than twice the size of 

FCS. 

 The cyclical shape should not encompass any 

of the FCS. 

The concept of shape encompassment is pivotal 

for the utility of SCS property (See Additional 

Information Fig 11 SCS example for simple 

representation of encompassment). A graph may 

also be considered as a compound structure 

constructed of the building blocks of small shapes 

(FCS). The different possible arrangements of 

these FCSs can lead to emergence of different 

types of SCS, thus resulting in the formation of 

different graphs. For making it more clear, let us 

consider an example. Suppose a vertex (Say, 

vertex 1 in Fig 7 J(4,2)) is involved in the 

formation of 4 different FCS (of length 3) and 5 

SCS (of length 4). Out of these 5 SCS, since 3 

contain the FCS within, these (1-5-6-4; 1-5-3-2 

and 1-3-2-4) will not qualify as valid SCS whose 

number would thus be reduced to 2. These (1-5-6-

4; 1-5-3-2 and 1-3-2-4) are rejected as they 

encompass atleast one FCS within. The shape 

encompassment can have two different broader 

definitions: 

 A SCS is termed as encompassing a FCS 

within it, if all of the vertices belonging to 

any of the FCS are also part of SCS. 

 A SCS is termed as encompassing a FCS 

within it, if "all but one of the edges" 

belonging to any of the FCS are also part of 

SCS. 

 

Encompassment is used for selecting SCS because 

if encompassment is not checked, the set of SCS 

will have redundant information which is already 

identified in the set of FCS. This information will 

not be able to differentiate between vertices as it 

will contain the total information which has 

already been counted in the FCS. To avoid such 

redundancy, encompassment is introduced. 

Although both the definitions are appropriate, 

there are better results in the case of latter 

definition (checking edge involvement in the 

formation of SCS). This is because, when 

checking for vertices, the orders in which the 

vertices appear play an important role in short-

listing the SCS. In a case where only the nodes 

involved in a FCS are part of a SCS and not the 

edges, the SCS will not be short-listed under the 

first definition. This property is relaxed in the case 

of checking for edge involvement (Fig 8) and thus 

it makes the second definition more permissive 

and less stringent without compromising the "non-

redundant information" aspect of the property. 

This case is clearly evident in the case of 

Lattice(4,4) and Shrikhande (Fig 6(a) graph VII 

and Fig 6(b) graph VIII) as even though both 

graphs have the same size of FCS, SCS yet the 

number of SCS per vertex is very different. 

Let us understand SCS with the help of J(4,2) in 

Fig 8. 
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Fig 8: Second Order Cyclical Shapes of J(4,2). Vertex 1 has 

quadrilaterals 1-2-3-5, 1-3-2-4, 1-3-6-4, 1-2-6-5 and 1-4-6-5. 

Since 1-2-3-5 contain FCS 1-2-3 and 1-3-5, 1-3-2-4 contain 

FCS 1-2-3 and 1-2-4, and 1-4-6-5 contains FCS 4-5-6 and 1-

4-5, therefore they do not qualify for SCS. Hence, the only 

SCS for Vertex 1 are 1-3-6-4 and 1-2-6-5 since they do not 

contain any FCS. This way, the SCS is calculated for all the 

vertices of the graph. The total number of SCS for J(4,2) 

are 3 and they are: 1-3-6-4, 2-3-5-4 and 1-2-6-5. 

1.4 Graph Invariants on the basis of cyclical 

shapes 

1.4.1 Size of FCS 

The size of the FCS for every vertex can act as a 

graph invariant. Although it is clear that within 

symmetrical graphs, the size of FCS would 

always be identical for every vertex, however, it 

would become very useful for majority of regular 

graphs where it can vary for every vertex. For 

instance, in the case of Miyazaki graph[26] M4, 

the size of the FCS varies from 3 to 6 (Additional 

Information Fig 10). It is also important to 

mention here that although the size of FCS is not 

a complete graph invariant, it can be useful in 

augmenting principally different other invariants 

such as eccentricity. 

1.4.2 First Order Participation Number (FPN) 

The FPN for a vertex is the total count of FCS that 

it participates in. It is a measure of denseness of 

the shapes around a given vertex. Interestingly, a 

regular graph may have multiple zones of varying 

local structure and the variability in the FPN can 

become useful in identifying these zones. These 

differences in FPN arise due to the differential 

extent of edge sharing as it directly represents 

local organisation in a graph. FPN can vary for 

different vertices in a single graph, but in the case 

of hard instances of symmetrical graphs, they are 

identical for every vertex. For example the FPN 

for every vertex of J(4,2) is 4 as mentioned 

previously in Fig 7. 

1.4.3 Size of SCS 

The size of the SCS for every vertex is also 

another graph invariant. Similar to the "size of 

FCS", it is also a constant among the vertices of 

symmetrical graphs and can vary for every vertex 

for some regular graphs (for example, in Miyazaki 

graph[26] M4 (shown in Additional Information  

Fig 10), the size of SCS varies from 5 to 10 for 

the vertices of the graph). 

Being a moderate graph invariant, the size of SCS 

can be combined with other graph invariants (such 

as size of FCS, FPN etc.) to form a combined 

complete graph invariant. 

1.4.4 Second Order Participation Number 

(SPN) 

The total number of SCS participating in a vertex 

is the Second Order Participation Number (SPN) 

of that vertex. For a graph, the SPN of each vertex 

can be considered as an important property of the 

graph for determining graph invariants because 

like FPN, it also helps in identifying multiple 

zones based on "supra-local structures" which 

emerge as a result of local organisation of FCS 

(See Additional Information Fig 11). And, unlike 

FPN, which may be identical for every vertex in 

symmetrical graphs, SPN can vary for different 

vertices. Therefore, it is a relatively strong graph 

invariant and can act as a complete graph 

invariant for hard instances of symmetrical 

graphs. Although, in most of the symmetrical 

graphs, the SPN is identical for every vertex, but, 

in some cases (STS[24]) there are variations in the 

participation of edges involved in SCS resulting in 

different sets of SPN for different vertices. The 

difference in SPN arises due to the differential 

extent of edge sharing not counted for FCS. The 

SPN for every vertex in J(4,2) is 2 as mentioned 

previously in Fig 8. 

1.4.5 Neighbourhood Cluster Analysis (NCA) 

It is not only important to identify the non-

isomorphic nature of graphs but it is also required 

in the case of isomorphic graphs to generate the 

bijective mapping (vertex correspondence) 

between two isomorphic ones. It has been 

observed that NCA solves this correspondence 

riddle when two graphs are deduced to be 

isomorphic with the help of the above graph 

invariants (size of FCS, FPN, size of SCS and 

SPN). For most of the hard instances of 
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symmetrical graphs it is observed that size of 

FCS, FPN, size of SCS and SPN are identical 

throughout the vertex set of graphs. But in the 

case of Steiner Triple System (STS) graphs[24], it 

is observed that the vertices involved in the 

generation of SCS are not equivalent and are 

partitionable into different sets on the basis of 

their SCS multiplicity (i.e. the number of SCS in 

which a given vertex is  involved-in in a graph). 

For such kinds of graphs, when two graphs are 

isomorphic, to generate a one-to-one 

correspondence for both graphs neighbourhood 

cluster analysis can be performed to obtain such 

correspondence. The steps involved in this 

process are as follows: 

 Identify the vertices (SCS formation set - 

SFS) involved in the formation of SCS 

around a given vertex (i). 

 For each of these vertices in SFS, calculate 

their respective SPN. 

 Cluster the vertices of SFS on the basis of 

their SPN. 

 For each SCS around a given vertex (i) 

calculate the frequencies of appearance of 

each cluster types (previous point) and label 

it (i) on the basis of these cluster frequencies. 

For STS graphs, it is observed that every vertex is 

unique in the graph, thus making correspondence 

generation easy and fool-proof. For rest of the 

symmetrical graphs (Figs 3(a), 3(b), 6(a) and 

6(b)), it is observed that there is only a single 

cluster for all vertices (since the SPN is identical 

for all vertices). Therefore, correspondence 

generation in such cases is carried out by Breadth-

First Search (BFS) algorithm[27]. 

2. Research Method 

Two graphs G1 and G2 (from a set of Generalised 

Johnson and/or Strongly Regular graphs) are 

considered for Graph Isomorphism. If the two 

graphs have equal vertices and degrees then the 

girth (length of the smallest cycle contained in a 

graph) of G1 and G2 is calculated and compared. 

If the girth for G1 and G2 is equal then structural 

aspects of graphs are compared. After comparison 

of girths, the FCS sequence for G1 and G2 is 

obtained and the FPN for all vertices are 

calculated. If the vertices of G1 and G2 have 

identical FPN for all vertices then the SCS 

sequence for G1 and G2 are obtained and the SPN 

is calculated for every vertex. The vertices of a 

graph may be partitioned into various sets where 

the vertices with identical SPN are placed in the 

same set. If the vertices of G1 and G2 can be 

partitioned into sets with identical size and the 

same corresponding SPN, then the graphs are 

deduced to be isomorphic and a vertex 

correspondence is generated. This can be 

understood with the help of Fig 12 of Additional 

Information. The vertex correspondence is based 

on FPN and SPN for a given vertex and traversal 

through its neighbours using BFS algorithm is 

carried out. 

3. Result and Analysis 

The size of FCS, FPN, size of SCS and SPN are 

mentioned in Table 2 for Generalised Johnson 

graphs GJ(6,3,1) and GJ(6,3,2) as shown in Fig 

3(a) and 3(b). 

 
Table 2: New Graph Invariants for Graph V: GJ(6,3,1)  

and VI: GJ(6,3,2) 

 

The Size of FCS, FPN, Size of SCS and SPN are 

mentioned in Table 3 for Lattice(4,4) and 

Shrikhande (both are Strongly Regular graphs 

SRG(16,6,2,2)) as shown in Fig 6(a) and 6(b). 

Table 3: New Graph Invariants of Graph VII: 

(Lattice(4,4)) and VIII: Shrikhande 

Vertex 

Lattice(4,4) Graph Shrikhande Graph 

Size 

of 

FCS 

FPN 

Size 

of 

SCS 

SPN 

Size 

of 

FCS 

FPN 

Size 

of 

SCS 

SPN 

A 3 6 4 9 3 6 4 3 

B 3 6 4 9 3 6 4 3 

C 3 6 4 9 3 6 4 3 

D 3 6 4 9 3 6 4 3 

E 3 6 4 9 3 6 4 3 

F 3 6 4 9 3 6 4 3 

G 3 6 4 9 3 6 4 3 

H 3 6 4 9 3 6 4 3 

Vertex 

GJ(6,3,1) GJ(6,3,2) 

Size of 

FCS 
FPN 

Size of 

SCS 
SPN 

Size of 

FCS 
FPN 

Size of 

SCS 
SPN 

A 3 18 4 18 3 18 4 18 

B 3 18 4 18 3 18 4 18 

C 3 18 4 18 3 18 4 18 

D 3 18 4 18 3 18 4 18 

E 3 18 4 18 3 18 4 18 

F 3 18 4 18 3 18 4 18 

G 3 18 4 18 3 18 4 18 

H 3 18 4 18 3 18 4 18 

I 3 18 4 18 3 18 4 18 

J 3 18 4 18 3 18 4 18 

K 3 18 4 18 3 18 4 18 

L 3 18 4 18 3 18 4 18 

M 3 18 4 18 3 18 4 18 

N 3 18 4 18 3 18 4 18 

O 3 18 4 18 3 18 4 18 

P 3 18 4 18 3 18 4 18 

Q 3 18 4 18 3 18 4 18 

R 3 18 4 18 3 18 4 18 

S 3 18 4 18 3 18 4 18 

T 3 18 4 18 3 18 4 18 
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I 3 6 4 9 3 6 4 3 

J 3 6 4 9 3 6 4 3 

K 3 6 4 9 3 6 4 3 

L 3 6 4 9 3 6 4 3 

M 3 6 4 9 3 6 4 3 

N 3 6 4 9 3 6 4 3 

O 3 6 4 9 3 6 4 3 

P 3 6 4 9 3 6 4 3 

 

Combining all the four graph invariants, it can be 

concluded that these are enough for uniquely 

distinguishing two symmetrical graphs and can be 

collectively termed as complete graph invariant 

for such graphs. 

An interesting feature among the Generalised 

Johnson/Strongly Regular graphs is the possibility 

that two graphs with identical number of vertices 

and edges can still be non-isomorphic. We have 

identified a solution for the problem based on 

structural symmetry of graphs. The method was 

validated on multiple pair-wise combinations (J vs 

SRG; GJ vs J; GJ vs GJ; GJ vs SRG; SRG vs 

SRG) among these classes to test for GI. In all of 

these comparisons, the compared graphs had 

identical number of vertices and degrees. The 

important results are mentioned in Tables 4, 5, 6, 

7 and 8 and discussed below. 

3.1 J vs SRG 

For such graphs, J(4,2) and SRG(6,4,2,4) were 

compared. Both graphs have identical values for 

each parameter (number of vertices, degrees, 

girth, FPN and SPN). Therefore, they were 

deduced as isomorphs. The correspondence of 

vertices was generated using BFS and a one-to-

one mapping was found for all vertices in both 

graphs.

Table 4: J vs SRG 

Case Graphs 
Vertices 

V 

Degrees 

d 

Girth 

g 

Size 

of 

FCS 

FPN 

[A(B)]* 

Size 

of 

SCS 

SPN 

[C(D)] 

ϯ 

Results 

J vs SRG 
J(4,2) 6 4 3 3 4(6) 4 2(6) 

Isomorphic 
SRG(6,4,2,4) 6 4 3 3 4(6) 4 2(6) 

  * B represents the number of vertices in vertex subset of graph with A as FPN value. 
   ϯ D represents the number of vertices in vertex subset of graph with C as SPN value. 

 

It is important to note that there is a decrease in 

the number of SPN formed as compared to FPN 

for the graphs J(4,2) and SRG(6,4,2,4) because 

generally number of edges involved in higher 

shapes always increases. Though the number of 

shapes formed for size four (FCS + 1) is 5, but 

since most of the shapes have one or more FCS 

encompassed, they get rejected for qualifying as 

a SCS. Therefore, the SPN value is 2 for each 

vertex. And, since both graphs have identical 

graph invariants (values for size of FCS, FPN, 

size of SCS and SPN), it is concluded that both 

are isomorphic to each other. 

3.2 GJ vs J 

The graphs GJ(6,3,1) and J(6,3) (where, J(6,3) is 

synonymous with GJ(6,3,2)) were compared.  

 

Both graphs have identical values for each 

parameter (number of vertices, degrees, girth, 

FPN and SPN). Hence, GJ(6,3,1) and J(6,3) were 

deduced to be isomorphic. The correspondence 

of vertices was generated using BFS and a one-

to-one mapping was found for all vertices in both 

graphs. 

As yet another example, GJ(14,7,1) and J(14,7) 

(where, J(14,7) is synonymous with GJ(14,7,6)) 

were compared. The respective girths of the two 

graphs were found to be different. Hence, they 

were inferred as non-isomorphic. Therefore, 

there was no need for further calculation of the 

remaining parameters. 

 

Table 5: GJ vs J 

Case Graphs 
Vertices 

V 

Degrees 

d 

Girth 

g 

Size of 

FCS 

FPN 

[A(B)]* 

Size 

of 

SCS 

SPN 

[C(D)] ϯ 
Results 

GJ 

vs J 

1 
GJ(6,3,1) 20 9 3 3 18(20) 4 18(20) 

Isomorphic 
J(6,3) 20 9 3 3 18(20) 4 18(20) 

2 
GJ(14,7,1) 3432 49 4 - - - - Not 

Isomorphic J(14,7) 3432 49 3 - - - - 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

Vol. 48, Issue 02, Quarter 02 (April-May-June 2019) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN (Online): 2319-6564 

www.ijesonline.com 
 

IJESPR 

www.ijesonline.com 

20 

 

  * B represents the number of vertices in vertex subset of graph with A as FPN value. 
   ϯ D represents the number of vertices in vertex subset of graph with C as SPN value. 

 
For graphs GJ(6,3,1) and J(6,3), it can be 

observed that there are huge FPNs formed where 

vertices of these graphs are just 20. This is 

because, FPN is directly proportional to the 

degrees of the vertices, and since there are 9 

degrees for each vertex, there are more 

participating edges involved for FCS. It is also 

worth mentioning that the SPN set is identical to 

the FPN set. 

This is because every vertex is directly 

connected with 9 vertices, it is also not 

connected with 10 other vertices, making the 

number of directly connected vertices equal to 

the number of not directly connected vertices. 

For graphs GJ(14,7,1) and J(14,7), it can be seen 

that though the number of vertices and degrees 

of each vertex are same, the girth of both graphs 

are different. 

This is because of the arrangement of edges 

involved in making the cycles. For GJ(14,7,1) 

every edge is arranged in such a way that there 

are cycles with size 4 and in the case of J(14,7) 

every edge is arranged in a way that there are 

cycles with size 3 making both graphs 

structurally different from each other, hence not 

isomorphic. 

3.3 GJ vs GJ 

GJ(14,7,2) was compared with GJ(14,7,5). These 

graphs differed in their respective girths, hence, 

they were deduced to be non-isomorphic. 

In another instance, GJ(14,3,0) (where 

GJ(14,3,0) is synonymous with K(14,3)) was 

compared with GJ(14,3,1). The respective girths 

for these graphs were same. However, as the 

FPN values for all vertices of one graph did not 

match with that of the second, therefore, they 

were inferred to be non-isomorphs. 

 

Table 6: GJ vs GJ 

Case Graphs 
Vertices 

V 

Degrees 

d 

Girth 

g 

Size of 

FCS 

FPN 

[A(B)]* 

Size of 

SCS 

SPN 

[C(D)] ϯ 
Results 

GJ 

vs 

GJ 

1 
GJ(14,7,2) 3432 441 4 - - - - Not 

Isomorphic GJ(14,7,5) 3432 441 3 - - - - 

2 
GJ(14,3,0) 364 165 3 3 4620(364) - - Not 

Isomorphic GJ(14,3,1) 364 165 3 3 5940(364) - - 

    * B represents the number of vertices in vertex subset of graph with A as FPN value. 
      ϯ D represents the number of vertices in vertex subset of graph with C as SPN value. 

 
For graphs GJ(14,7,2) and GJ(14,7,5), the girth 

is different. This is due to the arrangement of 

edges involved in forming the cycles. For 

GJ(14,7,2) there is reduced edge involvement in 

cycle formation making the girth 4. On the other 

hand, GJ(14,7,5) has more edges involved in 

cycle formation making the girth 3. Since girths 

are different, no further calculation was required. 

For graphs GJ(14,3,0) and GJ(14,3,1), it can be 

observed that the number of vertices, degrees of 

each vertex and girth are same. The difference is 

in the FPN of both graphs. Though FPN is 

directly proportional to the degrees of a vertex, 

there is a huge difference in FPN because there is 

more sharing of edges in graph GJ(14,3,1) 

resulting in increase in FPN as compared to the 

edge sharing of GJ(14,3,0). The concept of 

sharing of edges arises due to the involvement of 

each edge forming cycles (FCS and SCS). 

Sometimes, an edge is involved in only one FCS 

and sometimes it can be involved in more than 

one FCS. (For example, in the case of Fig 7, it 

can be observed that edge 1-2 is involved in 

making 2 FCS(1-2-3 and 1-2-4) for a single 

vertex whereas for the graph shown in Fig 11 

edge 1-2 is involved in making only 1 FCS (1-2-

8-7) for vertex 1. Therefore, it can be concluded 

that edge sharing is more in the case of J(4,2).) 

Therefore, the FPN for any vertex not only 

depends on the degree of that vertex but also 

depends on the number of edges being shared for 

each FCS. 

3.4 GJ vs SRG 

The graphs GJ(5,2,0) and SRG(10,3,0,1) have 

same girth and the FPN and SPN values for the 

complete vertex set in both graphs were 

identical. Hence, GJ(5,2,0) and SRG(10,3,0,1) 
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were deduced to be isomorphic. The 

correspondence of vertices was generated using 

BFS and a one-to-one mapping was found for all 

vertices in both graphs. 
Table 7: GJ vs SRG 

Case Graphs 
Vertices 

V 

Degrees 

d 

Girth 

g 

Size 

of 

FCS 

FPN 

[A(B)]* 

Size 

of 

SCS 

SPN 

[C(D)]ϯ 
Results 

GJ vs 

SRG 

GJ(5,2,0) 10 3 5 5 6(10) 6 6(10) 
Isomorphic 

SRG(10,3,0,1) 10 3 5 5 6(10) 6 6(10) 

* B represents the number of vertices in vertex subset of graph with A as FPN value. 
ϯ D represents the number of vertices in vertex subset of graph with C as SPN value. 

 
For graphs GJ(5,2,0) and SRG(10,3,0,1), it is 

worth mentioning that the number of neighbours 

and non-neighbours are not equal, but the FPN 

and SPN are same. This is again because of the 

sharing of edges. The edges shared in the case of 

SCS is more than the edges shared in the case of 

FCS making both FPN and SPN equal in number 

for every vertex. 

3.5 SRG vs SRG 

STS-19-x (where x ranges from 1 to 7) were 

compared amongst themselves out of 11 such  

 

graphs that were provided by nautY and 

Traces[5].These graphs belong to the same 

family of SRG (57,24,11,9)[28]. There are 

11,084,874,829[29] non-isomorphic forms of 

STS-19. These graphs are difficult to solve for 

graph isomorphism because they have same 

number of vertices, edges, girth and FPN. 

However, the number of vertices with identical 

SPN values were different for these graphs, thus 

these were inferred as mutually non-isomorphic. 

Table 8: SRG vs SRG 

Case Graphs 
Vertices 

V 

Degrees 

d 

Girth 

g 

Size 

of 

FCS 

FPN 

[A(B)]* 

Size 

of 

SCS 

SPN [C(D)] ϯ Results 

SRG 

vs 
SRG 

SRG(57,24,11,9) 

or STS-19-1 
57 24 3 3 132(57) 4 

528(20), 31(29), 

534(5), 537(3) 

Not 

Isomorphic 

SRG(57,24,11,9) 
or STS-19-2 

57 24 3 3 132(57) 4 
528(24),531(16), 
534(15), 537(2) 

SRG(57,24,11,9) 

or STS-19-3 
57 24 3 3 132(57) 4 

528(14),531(20), 

534(14), 537(6), 
540(1), 543(2) 

SRG(57,24,11,9) 

or STS-19-4 
57 24 3 3 132(57) 4 

528(28),531(23), 

534(5), 537(1) 

SRG(57,24,11,9) 

or STS-19-5 
57 24 3 3 132(57) 4 

528(13),531(17), 
534(19), 537(7), 

540(1) 

SRG(57,24,11,9) 

or STS-19-6 
57 24 3 3 132(57) 4 

528(11),531(23), 

534(16), 537(7) 

SRG(57,24,11,9) 

or STS-19-7 
57 24 3 3 132(57) 4 

528(21),531(22), 

534(12), 537(2) 

* B represents the number of vertices in vertex subset of graph with A as FPN value. 
 ϯ D represents the number of vertices in vertex subset of graph with C as SPN value. 

 

For all the graphs mentioned in Table 8, it can be 

noted that they have equal number of vertices, 

degrees for each vertex, girth and FPN. The only 

point of difference is in the SPN. The SPN differ 

in the number of identical sets the vertices are 

involved in. Comparing STS-19-1 and STS-19-4, 

it is observed that the number of SPNs are 

identical, i.e, 528, 531, 534 and 537 but still they 

are not isomorphic because of the number of 

vertices involved for every SPN set are different. 

This is again because of the sharing of edges of 

each SCS. This makes all these graphs non-

isomorphic forms.  

The most beautiful observation in the case of 

STS is the correspondence generation when two 

isomorphic STSs are compared. For 

correspondence generation, we perform NCA. 

For example, in the case of STS-19-1, the 20 
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vertices (SPN value of 528) are clustered in one 

set (A), the 29 vertices (SPN value of 531) are 

clustered in the next set (B), the 5 vertices (SPN 

value of 534) are clustered in another set (C) and 

the 3 vertices (SPN value of 537) are clustered in 

the next set (D). After classification, we pick 

each SCS and map the vertices involved in the 

formation of SCS (SCS Formation Set) 

according to their respective clusters. A count of 

the clusters involved for each vertex is then 

maintained. It is observed that this count is 

unique for every vertex of the graph (Additional 

Information). Thus, it can be concluded that 

NCA can uniquely distinguish between every 

vertex of a STS graph. This entire process is 

repeated for the second graph and a one-to-one 

correspondence is generated only if they are 

isomorphic. 

4.  Conclusion 

Graph properties play a major role in 

classification of graphs. We have identified two 

graph properties based on cyclical shapes: FCS 

and SCS. We have also discovered some graph 

invariants on the basis of these graph properties: 

size of FCS, FPN, size of SCS, SPN and NCA. 

There are many symmetrical graphs having 

identical graph invariants which may or may not 

be isomorphic to each other. These graph 

invariants might be helpful in developing graph 

invariants for those symmetrical graphs which 

fail in the case of other pre-defined graph 

invariants such as degree sequence, girth, 

chromatic number etc. These graph invariants 

will prove to be helpful in distinguishing other 

regular graphs as well and therefore, it can be 

used for solving graph isomorphism for some 

section of regular and symmetrical graphs. They 

can further be used as roots for more graph 

invariants. 

The running time complexity of the entire 

algorithm depends upon the calculation of FCS 

and SCS which in this method is O(n
5
). The 

running time complexity for calculation of FCS 

and SCS in this algorithm are O(n
2
d

2
g

2
) and 

O(n
2
d

3
g

2
) respectively where n represents the 

number of vertices, d represents the number of 

degrees and g represents the girth of the graph. 

The maximum girth for any connected Strongly 

Regular graph is 5 and for Generalised Johnson 

graph is 6[1]. Hence, the upper bound of 

parameter g can be taken as a constant for 

finding out the running time complexity of the 

entire algorithm. Therefore, the overall worst 

time complexity of the algorithm for determining 

isomorphs of Generalised Johnson (including 

Johnson graphs) and Strongly Regular graphs is 

O(n
2
d

3
) which will never exceed O(n

5
). It is also 

deduced that if there are two Generalised 

Johnson Graphs which are tested for 

isomorphism, FPN values for all the vertices are 

enough to distinguish whether both graphs are 

isomorphic or not (testing for SPN is redundant 

in such case). 

The participation number of vertices is a measure 

for structurally congruent or equivalent vertices. 

The Achilles’ heel of most of the currently 

available methods is their focus on canonical 

labelling of the vertices. This fails in extremely 

symmetric graphs such as Johnson graphs[6]. 

We, on the other hand, have used the structural 

symmetry for identification of the isomorphs. It 

is pertinent to mention here that the same 

approach can be applied for all regular graphs. 

This opens up the problem of Graph 

Isomorphism for a relook and possibly, in future, 

a polynomial time solution could be identified 

for "Complete Graph Isomorphism". 
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Additional Information 

4.1 Hard Instances of Symmetrical Graphs 

 
 (a) Kneser Graph: K(5,2)   (b) Johnson Graph: J(5,2) 

 
c) K(5,2)+J(5,2)=Complete Graph K5 

Figure 9: Generalised Johnson Graphs 

 

4.2 Variations in size of FCS and SCS 

 
Figure 10: Miyazaki Graph M4. The size of FCS for 

various vertices varies from 3 to 6 as shown. Similarly, 

the size of SCS for various vertices also varies from 6 to 

10. 

 

4.3 Example of SCS with and without 

encompassment 

 
Figure 11: Example to understand SCS Encompassment. 

In this example, there are 6 FCS of size 4 formed out of 

which 1-2-8-7, 2-3-9-8 and 3-4-10-9 are highlighted. The 

remaining FCS are 5-4-10-11, 6-5-11-12 and 1-6-12-7. 

When calculating SCS (of size 6), encompassment of the 

edges of all FCS are checked. In the case of hexagon 1-2 

3-9-8-7 it is found that 2 FCS are encompassed (1-2-8-7 

and 2-3-9-8). Hence, this shape does not qualify for SCS. 

On the other hand, hexagon 6-5-4-3-2-1 do not have any 

FCS encompassed and it emerges due to the 

arrangements of FCS. Therefore, hexagon 6-5-4-3-2-1 

qualifies for SCS. Another such SCS for the graph is 

hexagon 12-11-10-9-8-7 (not highlighted in the figure) 
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4.4 Overall Approach 

 
Figure 12: Flowchart for Method to solve Graph 

Isomorphism for Generalised Johnson and Strongly 

Regular graphs 

4.5 Neighbourhood Cluster Analysis 

To understand the NCA let us consider a STS-

19-1. It has 57 vertices and each vertex has 24 

edges. The girth for this graph is 3 and FPN 

value for each vertex is 132.  

Vertex 1 is involved in 528 SCS. These are  

1-2-18-11, 1-2-18-13, 1-2-18-38, 1-3-18-10, 1-3-

18-13, 1-3-18-22, 1-3-18-38, 1-5-18-10, 1-5-18-

11, 1-5-18-22, 1-5-18-28, 1-10-18-28, 1-10-18-

38, 1-11-18-22, 1-11-18-38, 1-13-18-22, 1-13-

18-28, 1-2-19-12, 1-2-19-13, 1-2-19-34, 1-2-19-

49, 1-4-19-13, 1-4-19-22, 1-7-19-10, 1-7-19-12, 

1-7-19-22, 1-7-19-34, 1-10-19-34, 1-12-19-22, 

1-12-19-49, 1-13-19-22, 1-13-19-34, 1-2-20-11, 

1-2-20-12, 1-2-20-38, 1-2-20-43, 1-6-20-10, 1-6-

20-12, 1-6-20-22, 1-6-20-38, 1-9-20-10, 1-9-20-

11, 1-9-20-22, 1-9-20-43, 1-10-20-38, 1-10-20-

43, 1-11-20-22, 1-11-20-38, 1-12-20-22, 1-12-

20-43, 1-2-21-14, 1-2-21-17, 1-2-21-46, 1-2-21-

53, 1-5-21-10, 1-5-21-17, 1-5-21-22, 1-5-21-53, 

1-7-21-10, 1-7-21-14, 1-7-21-22, 1-7-21-46, 1-

10-21-46, 1-10-21-53, 1-14-21-22, 1-14-21-53, 

1-17-21-22, 1-2-23-17, 1-2-23-46, 1-2-23-53, 1-

3-23-10, 1-3-23-16, 1-3-23-22, 1-3-23-53, 1-9-

23-10, 1-9-23-17, 1-9-23-22, 1-9-23-46, 1-10-

23-46, 1-10-23-53, 1-16-23-22, 1-16-23-46, 1-

17-23-22, 1-2-24-14, 1-2-24-15, 1-2-24-34, 1-2-

24-43, 1-6-24-10, 1-6-24-14, 1-6-24-22, 1-8-24-

10, 1-8-24-34, 1-10-24-34, 1-10-24-43, 1-14-24-

22, 1-14-24-34, 1-15-24-43, 1-3-25-12, 1-3-25-

15, 1-3-25-22, 1-3-25-34, 1-4-25-11, 1-4-25-15, 

1-4-25-22, 1-4-25-28, 1-8-25-11, 1-8-25-12, 1-8-

25-28, 1-8-25-34, 1-11-25-22, 1-11-25-34, 1-12-

25-22, 1-12-25-28, 1-15-25-28, 1-3-26-12, 1-3-

26-14, 1-3-26-38, 1-5-26-11, 1-5-26-12, 1-5-26-

28, 1-9-26-11, 1-9-26-14, 1-9-26-28, 1-9-26-46, 

1-11-26-38, 1-11-26-46, 1-12-26-28, 1-12-26-46, 

1-14-26-28, 1-14-26-38, 1-3-27-13, 1-3-27-14, 

1-3-27-43, 1-3-27-49, 1-7-27-11, 1-7-27-14, 1-7-

27-28, 1-7-27-43, 1-8-27-11, 1-8-27-13, 1-8-27-

28, 1-8-27-49, 1-11-27-49, 1-13-27-28, 1-13-27-

43, 1-14-27-28, 1-14-27-49, 1-3-29-15, 1-3-29-

16, 1-3-29-34, 1-3-29-53, 1-6-29-16, 1-6-29-28, 

1-6-29-53, 1-9-29-11, 1-9-29-15, 1-9-29-28, 1-9-

29-34, 1-11-29-34, 1-11-29-53, 1-15-29-28, 1-

15-29-53, 1-16-29-34, 1-3-30-10, 1-3-30-49, 1-

3-30-53, 1-4-30-11, 1-4-30-17, 1-4-30-28, 1-4-

30-53, 1-7-30-10, 1-7-30-11, 1-7-30-28, 1-10-

30-28, 1-10-30-53, 1-11-30-49, 1-11-30-53, 1-

17-30-28, 1-17-30-49, 1-2-31-12, 1-2-31-13, 1-

2-31-34, 1-2-31-38, 1-4-31-13, 1-4-31-16, 1-4-

31-28, 1-4-31-38, 1-5-31-12, 1-5-31-16, 1-5-31-

28, 1-5-31-34, 1-12-31-28, 1-13-31-28, 1-13-31-

34, 1-16-31-34, 1-16-31-38, 1-4-32-11, 1-4-32-

17, 1-4-32-43, 1-4-32-53, 1-6-32-12, 1-6-32-17, 

1-6-32-53, 1-7-32-11, 1-7-32-12, 1-7-32-34, 1-7-

32-43, 1-11-32-34, 1-11-32-53, 1-12-32-43, 1-

12-32-53, 1-17-32-34, 1-17-32-43, 1-4-33-14, 1-

4-33-16, 1-4-33-46, 1-4-33-53, 1-5-33-12, 1-5-

33-16, 1-5-33-34, 1-5-33-53, 1-9-33-14, 1-9-33-

34, 1-9-33-46, 1-12-33-46, 1-12-33-53, 1-14-33-

34, 1-14-33-53, 1-16-33-34, 1-16-33-46, 1-3-35-

12, 1-3-35-14, 1-3-35-34, 1-3-35-43, 1-4-35-14, 

1-4-35-17, 1-4-35-43, 1-4-35-46, 1-8-35-12, 1-8-

35-17, 1-8-35-34, 1-8-35-46, 1-12-35-43, 1-12-

35-46, 1-14-35-34, 1-17-35-34, 1-17-35-43, 1-3-
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36-13, 1-3-36-38, 1-3-36-43, 1-5-36-11, 1-5-36-

17, 1-5-36-43, 1-6-36-13, 1-6-36-17, 1-6-36-38, 

1-6-36-46, 1-11-36-38, 1-11-36-46, 1-13-36-43, 

1-13-36-46, 1-17-36-38, 1-17-36-43, 1-5-37-15, 

1-5-37-17, 1-5-37-22, 1-5-37-53, 1-7-37-15, 1-7-

37-22, 1-7-37-38, 1-8-37-13, 1-8-37-17, 1-8-37-

38, 1-8-37-53, 1-13-37-22, 1-13-37-53, 1-15-37-

38, 1-15-37-53, 1-17-37-22, 1-17-37-38, 1-5-39-

16, 1-5-39-43, 1-5-39-53, 1-8-39-13, 1-8-39-16, 

1-8-39-38, 1-8-39-53, 1-9-39-13, 1-9-39-14, 1-9-

39-43, 1-13-39-43, 1-13-39-53, 1-14-39-38, 1-

14-39-53, 1-16-39-38, 1-16-39-43, 1-4-40-13, 1-

4-40-15, 1-4-40-38, 1-5-40-10, 1-5-40-15, 1-5-

40-34, 1-5-40-49, 1-6-40-10, 1-6-40-13, 1-6-40-

38, 1-6-40-49, 1-10-40-34, 1-10-40-38, 1-13-40-

34, 1-15-40-38, 1-15-40-49, 1-5-41-11, 1-5-41-

43, 1-5-41-49, 1-6-41-13, 1-6-41-14, 1-6-41-46, 

1-6-41-49, 1-7-41-11, 1-7-41-14, 1-7-41-43, 1-7-

41-46, 1-11-41-46, 1-11-41-49, 1-13-41-43, 1-

13-41-46, 1-14-41-49, 1-2-42-11, 1-2-42-15, 1-

2-42-43, 1-6-42-16, 1-6-42-22, 1-6-42-28, 1-8-

42-11, 1-8-42-16, 1-8-42-28, 1-11-42-22, 1-15-

42-28, 1-15-42-43, 1-16-42-22, 1-16-42-43, 1-4-

44-11, 1-4-44-16, 1-4-44-43, 1-4-44-53, 1-6-44-

10, 1-6-44-16, 1-6-44-49, 1-6-44-53, 1-9-44-10, 

1-9-44-11, 1-9-44-43, 1-9-44-49, 1-10-44-43, 1-

10-44-53, 1-11-44-49, 1-11-44-53, 1-16-44-43, 

1-16-44-49, 1-4-45-14, 1-4-45-15, 1-4-45-22, 1-

4-45-46, 1-5-45-10, 1-5-45-15, 1-5-45-22, 1-5-

45-49, 1-8-45-10, 1-8-45-46, 1-8-45-49, 1-10-

45-46, 1-14-45-22, 1-14-45-49, 1-15-45-46, 1-

15-45-49, 1-2-47-14, 1-2-47-15, 1-2-47-34, 1-2-

47-46, 1-5-47-15, 1-5-47-16, 1-5-47-28, 1-5-47-

34, 1-6-47-14, 1-6-47-16, 1-6-47-28, 1-6-47-46, 

1-14-47-28, 1-14-47-34, 1-15-47-28, 1-15-47-46, 

1-16-47-34, 1-16-47-46, 1-7-48-15, 1-7-48-16, 

1-7-48-22, 1-8-48-13, 1-8-48-16, 1-8-48-49, 1-8-

48-53, 1-9-48-13, 1-9-48-15, 1-9-48-22, 1-9-48-

49, 1-13-48-22, 1-13-48-53, 1-15-48-49, 1-15-

48-53, 1-16-48-22, 1-16-48-49, 1-3-50-13, 1-3-

50-15, 1-3-50-34, 1-3-50-49, 1-6-50-13, 1-6-50-

17, 1-6-50-46, 1-6-50-49, 1-7-50-15, 1-7-50-34, 

1-7-50-46, 1-13-50-34, 1-13-50-46, 1-15-50-46, 

1-15-50-49, 1-17-50-34, 1-17-50-49, 1-2-51-12, 

1-2-51-13, 1-2-51-38, 1-2-51-49, 1-7-51-12, 1-7-

51-16, 1-7-51-28, 1-7-51-38, 1-9-51-13, 1-9-51-

28, 1-9-51-49, 1-12-51-28, 1-12-51-49, 1-13-51-

28, 1-16-51-38, 1-16-51-49, 1-3-52-12, 1-3-52-

15, 1-3-52-22, 1-3-52-38, 1-8-52-12, 1-8-52-17, 

1-8-52-38, 1-8-52-46, 1-9-52-15, 1-9-52-17, 1-9-

52-22, 1-9-52-46, 1-12-52-22, 1-12-52-46, 1-15-

52-38, 1-15-52-46, 1-17-52-22, 1-17-52-38, 1-2-

54-17, 1-2-54-46, 1-2-54-49, 1-3-54-10, 1-3-54-

16, 1-3-54-49, 1-4-54-16, 1-4-54-17, 1-4-54-28, 

1-4-54-46, 1-10-54-28, 1-10-54-46, 1-16-54-46, 

1-16-54-49, 1-17-54-28, 1-17-54-49, 1-2-55-14, 

1-2-55-17, 1-2-55-43, 1-2-55-53, 1-7-55-14, 1-7-

55-16, 1-7-55-28, 1-7-55-43, 1-8-55-16, 1-8-55-

17, 1-8-55-28, 1-8-55-53, 1-14-55-28, 1-14-55-

53, 1-16-55-43, 1-17-55-28, 1-17-55-43, 1-6-56-

12, 1-6-56-17, 1-6-56-38, 1-6-56-53, 1-7-56-12, 

1-7-56-15, 1-7-56-34, 1-7-56-38, 1-9-56-15, 1-9-

56-17, 1-9-56-34, 1-12-56-53, 1-15-56-38, 1-15-

56-53, 1-17-56-34, 1-17-56-38, 1-4-57-14, 1-4-

57-38, 1-4-57-43, 1-8-57-10, 1-8-57-12, 1-8-57-

38, 1-8-57-49, 1-9-57-10, 1-9-57-14, 1-9-57-43, 

1-9-57-49, 1-10-57-38, 1-10-57-43, 1-12-57-43, 

1-12-57-49, 1-14-57-38, 1-14-57-49.  

The 57 vertices can be clustered in 4 groups 

based on the FPN. Out of 57 vertices, 20 belong 

to the cluster 'A' and all vertices in this cluster 

participate in the formation of 528 SCS. 

Similarly, 29, 5 and 3 vertices belong to B, C 

and D cluster respectively. Furthermore vertices 

from B, C and D cluster particitpate in the 

formation of 531, 534 and 537 SCS respectively. 

The detailed cluster assignment for 57 vertices 

are as under:  

1=A, 2=A, 3=B, 4=A, 5=A, 6=A, 7=A, 8=B, 

9=A, 10=B, 11=B, 12=B, 13=B, 14=B, 15=B, 

16=B, 17=B, 18=B, 19=C, 20=A, 21=D, 22=A, 

23=C, 24=D, 25=B, 26=A, 27=B, 28=A, 29=B, 

30=A, 31=C, 32=C, 33=A, 34=A, 35=C, 36=A, 

37=B, 38=A, 39=B, 40=A, 41=D, 42=B, 43=A, 

44=B, 45=B, 46=B, 47=B, 48=B, 49=A, 50=B, 

51=B, 52=B, 53=B, 54=B, 55=B, 56=B, 57=A.  

The vertices of SCS in which vertex 1 

participates can be mapped using the above 

mentioned cluster ids as  

1-2-18-11 (where 1, 2, 18, 11 are vertex 

numbers) : A-A-B-B  

............... ...............  

............... ...............  

............... ...............  

for all 528 SCS.  

Hence for vertex 1, the cluster A B, C and D 

appear 1172, 811, 82 and 47 times.  

For the overall graph, the frequencies of clusters 

are as follows:  
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Table 1: Frequency of clusters of STS-19-1 

Vertex 

ID 
Frequency of Cluster ID 

1 A=1172 B=811 C=82 D=47 

2 A=1091 B=752 C=166 D=103 

3 A=633 B=1303 C=139 D=49 

4 A=1170 B=698 C=193 D=51 

5 A=1142 B=754 C=111 D=105 

6 A=1143 B=756 C=110 D=103 

7 A=1060 B=807 C=140 D=105 

8 A=604 B=1328 C=114 D=78 

9 A=1145 B=805 C=109 D=53 

10 A=578 B=1301 C=139 D=106 

11 A=552 B=1382 C=110 D=80 

12 A=579 B=1299 C=196 D=50 

13 A=521 B=1383 C=143 D=77 

14 A=492 B=1388 C=110 D=134 

15 A=463 B=1499 C=85 D=77 

16 A=466 B=1469 C=139 D=50 

17 A=438 B=1442 C=166 D=78 

18 A=609 B=1244 C=165 D=106 

19 A=551 B=733 C=714 D=138 

20 A=1087 B=726 C=167 D=132 

21 A=554 B=794 C=171 D=629 

22 A=1056 B=813 C=138 D=105 

23 A=496 B=877 C=656 D=107 

24 A=553 B=824 C=170 D=601 

25 A=522 B=1358 C=195 D=49 

26 A=1060 B=864 C=83 D=105 

27 A=524 B=1356 C=136 D=108 

28 A=1086 B=863 C=111 D=52 

29 A=552 B=1384 C=107 D=81 

30 A=1032 B=891 C=111 D=78 

31 A=577 B=821 C=685 D=53 

32 A=581 B=760 C=687 D=108 

33 A=975 B=812 C=220 D=105 

34 A=1117 B=726 C=191 D=78 

35 A=501 B=844 C=712 D=79 

36 A=1004 B=835 C=194 D=79 

37 A=523 B=1380 C=142 D=79 

38 A=1201 B=752 C=110 D=49 

39 A=551 B=1329 C=163 D=81 

40 A=1090 B=837 C=109 D=76 

41 A=578 B=825 C=144 D=601 

42 A=522 B=1385 C=141 D=76 

43 A=1112 B=756 C=138 D=106 

44 A=631 B=1275 C=139 D=79 

45 A=583 B=1355 C=81 D=105 

46 A=634 B=1244 C=139 D=107 

47 A=548 B=1325 C=115 D=136 

48 A=475 B=1433 C=138 D=78 

49 A=1144 B=780 C=110 D=78 

50 A=496 B=1350 C=170 D=108 

51 A=576 B=1332 C=140 D=76 

52 A=523 B=1411 C=138 D=52 

53 A=634 B=1271 C=139 D=80 

54 A=552 B=1355 C=167 D=50 

55 A=490 B=1358 C=166 D=110 

56 A=604 B=1304 C=113 D=103 

57 A=1087 B=837 C=113 D=75 

 

This never gets repeated in the rest of STS-19-x 

graphs  

 


